Refinable bivariate quartic C2-splines for multi-level data representation and surface display

نویسندگان

  • Charles K. Chui
  • Qingtang Jiang
چکیده

In this paper, a second-order Hermite basis of the space of C2quartic splines on the six-directional mesh is constructed and the refinable mask of the basis functions is derived. In addition, the extra parameters of this basis are modified to extend the Hermite interpolating property at the integer lattices by including Lagrange interpolation at the half integers as well. We also formulate a compactly supported super function in terms of the basis functions to facilitate the construction of quasi-interpolants to achieve the highest (i.e., fifth) order of approximation in an efficient way. Due to the small (minimum) support of the basis functions, the refinable mask immediately yields (up to) four-point matrix-valued coefficient stencils of a vector subdivision scheme for efficient display of C2-quartic spline surfaces. Finally, this vector subdivision approach is further modified to reduce the size of the coefficient stencils to two-point templates while maintaining the second-order Hermite interpolating property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refinable Bivariate Quartic C-splines for Multi-level Data Representation and Surface Display

In this paper, a second-order Hermite basis of the space of C2quartic splines on the six-directional mesh is constructed and the refinable mask of the basis functions is derived. In addition, the extra parameters of this basis are modified to extend the Hermite interpolating property at the integer lattices by including Lagrange interpolation at the half integers as well. We also formulate a co...

متن کامل

Refinable bivariate quartic and quintic C2-splines for quadrilateral subdivisions

Refinable compactly supported bivariate C quartic and quintic spline function vectors on the four-directional mesh are introduced in this paper to generate matrix-valued templates for approximation and Hermite interpolatory surface subdivision schemes, respectively, for both the √ 2 and 1-to-4 split quadrilateral topological rules. These splines have their full local polynomial preservation ord...

متن کامل

Some smoothness conditions and conformality conditions for bivariate quartic and quintic splines

This paper is concerned with a study of some new formulations of smoothness conditions and conformality conditions for multivariate splines in terms of B-net representation. In the bivariate setting, a group of new parameters of bivariate quartic and quintic polynomials over a planar simplex is introduced, new formulations of smoothness conditions of bivariate quartic C1 splines and quintic C2 ...

متن کامل

Subdivision Scheme of Quartic Bivariate Splines on a Four-directional Mesh

In this paper we give a new definition of minimally and quasi-minimally supported C quartic bivariate B-splines associated with the four-directional mesh of the plane, introduced in [7,19], which is convenient to show that theses B-splines satisfy the refinement equation and we determine the associated matrix mask, we prove that the family of these B-splines is stable and the associated subdivi...

متن کامل

Surface Subdivision Schemes Generated by Refinable Bivariate Spline Function Vectors

Abstract The objective of this paper is to introduce a direct approach for generating local averaging rules for both the √ 3 and 1-to-4 vector subdivision schemes for computer-aided design of smooth surfaces. Our innovation is to directly construct refinable bivariate spline function vectors with minimum supports and highest approximation orders on the six-directional mesh, and to compute their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2005